An affine-scaling interior-point CBB method for box-constrained optimization
نویسندگان
چکیده
We develop an affine-scaling algorithm for box-constrained optimization which has the property that each iterate is a scaled cyclic Barzilai–Borwein (CBB) gradient iterate that lies in the interior of the feasible set. Global convergence is established for a nonmonotone line search, while there is local R-linear convergence at a nondegenerate local minimizer where the second-order sufficient optimality conditions are satisfied. Numerical experiments show that the convergence speed is insensitive to problem conditioning. The algorithm is particularly well suited for image restoration problems which arise in positron emission tomography where the cost function can be infinite on the boundary of the feasible set.
منابع مشابه
An Affine-Scaling Interior-Point Method for Continuous Knapsack Constraints with Application to Support Vector Machines
An affine-scaling algorithm (ASL) for optimization problems with a single linear equality constraint and box restrictions is developed. The algorithm has the property that each iterate lies in the relative interior of the feasible set. The search direction is obtained by approximating the Hessian of the objective function in Newton’s method by a multiple of the identity matrix. The algorithm is...
متن کاملA first-order interior-point method for linearly constrained smooth optimization
We propose a first-order interior-point method for linearly constrained smooth optimization that unifies and extends first-order affine-scaling method and replicator dynamics method for standard quadratic programming. Global convergence and, in the case of quadratic program, (sub)linear convergence rate and iterate convergence results are derived. Numerical experience on simplex constrained pro...
متن کاملSuperlinear and quadratic convergence of affine-scaling interior-point Newton methods for problems with simple bounds without strict complementarity assumption
A class of affine-scaling interior-point methods for bound constrained optimization problems is introduced which are locally q–superlinear or q–quadratic convergent. It is assumed that the strong second order sufficient optimality conditions at the solution are satisfied, but strict complementarity is not required. The methods are modifications of the affine-scaling interior-point Newton method...
متن کاملAn affine scaling method for optimization problems with polyhedral constraints
Recently an affine scaling, interior point algorithm ASL was developed for box constrained optimization problems with a single linear constraint (GonzalezLima et al., SIAM J. Optim. 21:361–390, 2011). This note extends the algorithm to handle more general polyhedral constraints. With a line search, the resulting algorithm ASP maintains the global and R-linear convergence properties of ASL. In a...
متن کاملAn Affine Scaling Interior Algorithm via Conjugate Gradient and Lanczos Methods for Bound-constrained Nonlinear Optimization†
In this paper, we construct a new approach of affine scaling interior algorithm using the affine scaling conjugate gradient and Lanczos methods for bound constrained nonlinear optimization. We get the iterative direction by solving quadratic model via affine scaling conjugate gradient and Lanczos methods. By using the line search backtracking technique, we will find an acceptable trial step len...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 119 شماره
صفحات -
تاریخ انتشار 2009